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Like single-layer flow in an inclined channel [l], the uniform flow of a two-layer fluid can become 
unstable. As a result of the development of instability at the interface of the fluids, quasiregular waves 
of finite amplitude develop which have become known as roll waves. In the shallow-water approximation, 
roll waves are a subclass of periodic, discontinuous, travelling waves in which a smooth transition from 
subcritical flow to supercritical flow occurs in a system of coordinates moving at the velocity of the wave. 
The conditions for the development and the structure of roll waves in gas-liquid flows have been 
investigated in [2-6]. In the case of the equations of single-layer shallow water in an open inclined 
channel, a criterion for the non-linear stability of a wave packet of finite amplitude has been proposed 
in [7], based on the property of the hyperbolic form of the equations of the modulations for a two- 
parameter family of roll waves. 

In this paper we investigate the structure of travelling waves in two-layer flow and, in particular, we 
describe new “anomalous” flow conditions, the transition to which substantially changes the flow pattern. 
It is shown that, as in the case of flows in open channels, the finite-amplitude roll waves which arise in 
the two-layer fluid flow in a horizontal channel form a two-parameter family. The equations of the 
modulations in the case of packets of roll waves can therefore be obtained by a method which is similar 
to that used previously [7,8] when analysing the non-linear stability of periodic waves in open inclined 
channels. In this case, the condition for the stability of the wave packet are expressed in terms of the 
hyperbolic form of the corresponding systems of modulation equations. 

1. THE EQUATIONS OF TWO-LAYER SHALLOW 
WATER WITH FRICTION 

In long channels, friction at the walls of the channel and at the interface of the fluids has a main effect 
on the structure of the waves in a two-layer fluid. Using the hypothesis that the turbulent friction 
coefficient is constant, we write the equations of two-layer flow in a channel of constant depth in the 
Boussinesq approximation 0 < (p- - p+)/po 4 1) in the form 

h, +(hu_), =o (H-h),+((H-h)u+), =o 

u; + u-u; + bh, + po’p; = -c, 
u- 1 u- 1 

h-Ci 

(u--u+)Iu--u+I 
h 

WI 

u+lu+l 
u:+u+u;+p;‘p; =-c, (H_h) +c; 

(u--u+)Iu--u+I 

(H-h) 

Here u+, u- is the velocity, p+ and p- are the densities of the upper and lower layers, respectively, p0 
is the mean density, b = (p- - p+)g/po; h is the depth of the lower layer, His the total depth of the 
channel, and c, and ci are the constant coefficients of friction on the walls of the channel and at the 
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interface of the fluids. After changing to dimensionless variables, it can be assumed that H = 1,b = 1, 
c, = 1, c = ci/c, and, for the required variables h, y = u- - u+, we obtain the inhomogeneous system 
of equations 

h, +(h(l -h)y), =0 

y, +(u-~/~--u+~ /2+h), = F 

where 

F u+lu+l u-lu-1 
=--_-+c 

(u’-u-)lu+ -u- 1 

i-h h h(l -h) 

The values of u’ are determined as functions of h and y from the following relations 

hu- + (1 - h)u+ = u, I const 

0.2) 

(I-3) 

u+=u,--h, u-=u,+(l-h)y (1.4) 

The behaviour of the characteristics and properties of the discontinuous solutions for system (1.2) have 
been investigated in [9, lo]. We shall therefore use these results in the analysis of the discontinuous waves. 

2. TRAVELLING WAVES 

We will confine ourselves to considering waves which travel to the right, that is, we consider the solutions 
of system (1.1) which depend on the variable 5 = x - Df, D > 0, such that 0 < u- < D, 0 < u+ < D. 
The equations of the waves can be represented in the form 

h(D-u-)=m-(1-h)(D-u+)=m+ 

J=(D-u-)212-(D-u+)2/2+h, dl/&=F (2.1) 

By virtue of relations (1.3), (1.4) and (2.1) the quantities J and F are functions of the single 
variable h. 

System (2.1) reduces to the ordinary differential equation 

-2 +2 &F(h), A(h)+_~_-._____ 
d5 A(h) h3 (1: h)3 

(2.2) 

A single extremum point h = hi of the function A(h), corresponding to the maximum of this function, 
exists in the interval (0,l). Periodic solutions, describing roll waves, can be constructed if the following 
condition is satisfied 

A(hJ > 0 (2.3) 

In this case, the graph of the functionJ(h) is shown in Fig. l(a). The functionJ(h) has a local minimum 
at the point y and a local maximum at the pointy*. In a system of coordinates which moves at the velocity 
of the wave D, subcritical flow (A(h) > 0) occurs when y < h c y* and supercritical flow (A(h) c 0) 
occurs when 0 < h < y and when y* c h < 1. 

Note that it is sufficient to consider roll waves in the neighbourhood of the pointy which correspond 
to the transition ABE. The similar wave pattern A’B’E in the neighbourhood of the pointy* can be 
obtained by mirror reflection of the wave profile considered below with respect to the midplane of the 
channel. 

The construction of roll waves in the case of two-layer flow is similar to the construction carried out 
previously for the flow of a single-layer fluid in an inclined channel. The conditions in the discontinuity 
in the case of (1.1) take the forrnJ(h+) = J(h-) (the transition AI3 in Fig. la). Since it follows from the 
conditions for the stability of a discontinuity that the state ahead of the discontinuity corresponds to 
supercritical flow and the state behind the discontinuity corresponds to subcritical flow, then h+ c y 
< h- c y*, and the necessary condition for a continuous solution, connecting these states, to exist is 
that the right-hand side of Eq. (2.2) should vanish at the pointy, i. e. F(y) = 0. 
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Fig. 1 

Since A(h) c 0 when h+ < h c y and A(h) > 0 wheny < h < h-, then, to construct a monotonically 
increasing continuous solution of Eq. (2.2) connecting the two levels h = h+ and h = h-, it is necessary 
that 

F(h)<0 when h+ch<y and F(h)>0 when y<hch- 

Satisfaction of the conditions 

(2.4) 

F(y) = 0, F’(y) > 0 (2.5) 

is therefore the sufficient condition for small-amplitude roll waves to exist in the neighbourhood of a 
uniform flow of depth y. 

When constructing finite-amplitude waves it is necessary to analyse the behaviour of the function 
F(h) and satisfy conditions (2.4) as a function of the flow parameters. We shall show that, as in the case 
of single-layer flow, roll waves form a two-parameter family of solutions in the case of a fixed overall 
flow rate through a cross-section of the channel. 

3. ROLL WAVE PARAMETERS 

Suppose the quantity U, is specified. We shall determine the flow parameters corresponding to the critical 
depth y. We fixy E (0, 1) and denote the velocities of the lower and upper layers in the critical cross- 
section by uC, w,. Then, the first equation in (1.4) and the conditions for the flow to be critical 
A(y) = 0, F(y) = 0 in the variables 

take the form 

v = u&,,,, z = W&U,,,, 8 = Dlu, 

yu+(l-y)z= I 

(e-v)* (e-z)* I 

-+-=z Y 1-Y 

2 
+pJw-u I =o 2* u 

1-Y Y YU -Y) 

The last equation in (3.1) gives the equation 

“2-L+c w)la-II=O 
1-Y Y Y(l -Y) 

(3.1) 

(3.2) 

in the unknown a = z/u. 
For a given y E (0, l), it is required to find a positive solution of this equation. Suppose a 2 1. 

Then, Eq. (3.2) reduces to a quadratic equation, a unique solution of which a B 1 exists if and 
only if 0 < y c V2. It can be shown in a similar manner that a unique solution of Eq. (3.2) exists in the 
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interval (0, 1) if and only if 1/2 < y < 1. Hence, a unique positive solution of  Eq. (3.2) exists for 
anyy ~ (0, 1). 

Suppose 0 < y ~< 1/2. Then, a /> 1 is determined from (3.2), that is, z /> l) or w c >~ u c. In this 
case 

A'(y) = 3 ((D7-'~c)2[~ y2 ( D - w c ) 2 ]  _ y)2 12((D-uc )2 - ( D - w c )  2)>0 

Similarly, when y = y .  > 1/2, we have wc < uc and 

A ' ( y , )=3( (D-uc )  2 (__D.Zwc)2]~ 
y2 (i _ y,)2 ) ~ 1 2 ( ( D - u c ) 2 - ( O - w c ) 2 )  <0 

Hence, we have shown that a local minimum of the function J(h) is reached at the point h = y when 
y < 1/2. Wheny  = y .  > 1/2, a local maximum is reached at the critical point (Fig. la). Next, from system 
(3.1) using the known values o fy  and a ( o r y ,  and a), u and z and, consequently, u c and w c are found 
uniquely from the formulae 

I 
V = , z = o a  

y+(1 - y)a 

To determine the value of 0, it is necessary to find the roots of the quadratic polynomial 

(O-v)2  (O -z )  2 I 
P(0) = + - -  2 y I - y u m 

The minimum value of P(0) is reached at the point 0 = 0 m = l) (1 -- y) + zy. Therefore, wheny < 1/2, it 
follows from the inequality u < z that ~ < 0m < z and, wheny .  > 1/2, it follows from the inequality z < 
a9 that z < 0m < v. Since a solution of the equation P(0) = 0 is sought such that z < 0, t) < 0, then 0m < 
0 and the solution is defined uniquely. When y < 1/2, a solution only exists when P(z) < 0, that is, when 

u,. < "~ (3.3) 
Z - - O  

When y .  > 1/2, satisfaction of the inequality P(~) < 0, that is, 

41-Y* (3.4) 
/,tm < ~  

V - Z  

is the necessary and sufficient condition for a permissible solution to exist. 
Hence, using the given value o fy  ~ (0, 1/2) o r y .  e (1/2, 1), it is possible to establish uniquely the 

critical flow parameters D, u¢, Wc for the corresponding range of the mean velocity urn(urn > 0), which 
is defined by inequalities (3.3) or (3.4). 

As was noted above, for small amplitude periodic roll waves to exist in the neighbourhood of the 
critical pointy  < 1/2. It is sufficient to satisfy the condition F'(y) > 0. Similarly, w h en y .  > 1/2, small- 
amplitude roll waves will exist when F ' (y . )  > 0 and, unlike the waves in the neighbourhood of the point 
y < 1/2, these waves will satisfy the condition dh/d~ < 0 in the continuity sections (the transition A 'E 'B '  
in Fig. la). 

4. R O L L  WAVES OF L I M I T I N G  A M P L I T U D E  

Suppose the critical depth y < 1/2 is fixed and roll waves of infinitesimal amplitude exist in the 
neighbourhood of this critical depth, that is, A(y) = 0, F(y) = 0, A'(y) > 0, F'(y) > 0. As in the case of 
a single-layer flow, the minimum depth of the wave h - can be chosen as the second independent 
parameter, characterizing a roll wave. The conjugate depth h -  (the transition AB in Fig. la), which is 
a maximum in the period of the wave, is determined from the relations on the discontinuity. When 
y < 1/2, for a periodic solution to exist, it is necessary that 
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F(h) < 0 when h+ d h < y 

F(h) > 0 when y < h 4 h- (4.1) 

As can be seen from Fig. l(a), when h+ decreases, the depth h- increases and inequalities (4.1) are no 
longer satisfied if the function F(h) vanishes at one of the ends of the segment h+, h-. In this case, the 
length of the roll wave tends to infinity and, by analogy with the structure of the flow in a single-layer 
fluid, we are concerned with a wave of limiting amplitude. 

Another situation occurs if conditions (4.1) are satisfied in the interval h+, h- up to the value h- = 
ye.. Here, we are concerned with a wave of maximum amplitude Sh = y* - h’ (Fig. lb) in which the flow 
is critical immediately behind the discontinuity since A(P) = 0. If F(y*) > 0, then, in the neighbourhood 
of the level h = y*, the derivatives of the solution of Eq. (2.2) increase without limit. 

It has been shown in the case of flows of a single-layer fluid in an open channel [7] that roll wave 
packets are stable over a fairly narrow range of wave numbers and that limiting amplitude waves are 
not stable. The stability analysis of roll waves has still not been carried out in the case of a two-layer 
fluid, although the modulation equations for the variables y and h+ can easily be obtained by the 
averaging Eqs (1.2) in the same way as in the case of a single-layer fluid. 

The existence of roll waves with an amplitude exceeding Sh is impossible. However, on reaching a 
maximum amplitude of the wave, it is possible to change to a fundamentally new solution of the travelling 
wave type which, within the framework of the two-layer flow model being considered here, will be slug 
flow conditions. In fact, if the condition for a maximum-amplitude wave to exist is satisfied (inequalities 
(4.1) hold on hl, y*) and, moreover 

F(h) > 0 when y, c h c h, 

that is, the functions A(h) and F(h) have different signs in the segment BC (Fig. lb), it is possible to 
construct a new periodic solution which corresponds to the transition ABCEA. This solution is a travelling 
wave with a velocity D corresponding to two segments of the continuous solution (2.1) where the depth 
increases along AE and decreases with respect to 5 along CB (Fig. 2). Furthermore, this solution contains 
a pair of discontinuities of the “hydraulic jump -pit” type joining the segments of continuous flow. Since 
the flow is supercritical along the segments AE and CB and critical at the points B and E behind the 
discontinuities, the conditions for the discontinuities to be stable are satisfied and we are dealing with 
the “anomalous” flow conditions which have been considered previously in [lo, 111. “Anomalous” 
supercritical flow conditions containing a system of “hydraulic jump - pit” discontinuities were found 
in [lo, 1 l] in the case of the two-layer fluid flow in the neighbourhood of a local constriction of the channel. 
Note that friction on the walls of the channel, which is similar to the action of a local channel constriction 
on a flow, plays a role in the formation of the flow structure. Here, by virtue of the smallness of the friction 
coefficient, this effect manifests itself in exceedingly large spatial scales. 

An important feature of the “anomalous” solution ABCEA which has been constructed should be 
pointed out. For such a structure to exist, the condition F(y) = 0 as well as the condition F(&) = 0 
cease to be necessary and the solution ABCEA, generally speaking, does not describe a roll wave. For 
a periodic solution of the above-mentioned configuration to exist when there is a further change in the 
flow parameters, it is therefore necessary to ensure that the following inequalities are satisfied (Fig. lb) 

F(h)<0 when h, s h-cy 

F(h) > 0 when y+ < h s h, 

Note that the structure of the “anomalous” solutions is determined as usual by two independent 
parameters, although different from those in the case of roll waves. This last remark enables us to derive 
modulation equations for the stability analysis of slug flow conditions using a technique which has been 
described previously [7,8]. 

0 x 

Fig. 2 
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Due to the complex structure of the anomalous solutions, the investigation of the hyperbolic character 
of the corresponding modulation equations is still an unsolved problem. Another approach, which 
enables one to judge the non-linear stability of roll waves and slug flow conditions, lies in an analysis 
of the non-stationary problem of the formation and development of finite-amplitude waves in two-layer 
flow as a result of the instability of uniform flow. Of course, we are referring here to a numerical 
investigation of this stability. 

The results of a numerical calculation of the development of the instability of shear flow and the 
transition to slug flow conditions within the framework of model (1.1) are presented in Fig. 3. In the 
entrance segment of the channel (H = 
the upper and lower layers (ui = 

1, L = 50, L is the channel length), the constant velocities of 
1.5, u0 = 2) and the small harmonic perturbations in the depth of 

the lower layer (h = 0.5 + 0.01 cos (lot)) are given on the left. These perturbations develop quite slowly 
in the shear flow of the fluid almost up to the middle of the channel. An explosive growth then occurs 
and there is a non-linear stage in the development of the perturbations. Since the flow being considered 
is supercritical over the whole channel length, the solution at fairly long times is completely determined 
by the Cauchy data at the channel inlet. 

The position of the interface of the layers at the instant of time t = 25, which is sufficiently long for 
a quasi-steady flow pattern to become established, is shown in Fig. 3. It can be seen that, in the segment 
l-l’ as a result of non-linear interaction of the waves, the channel is almost shut off, sometimes by one 
layer and sometimes by the other, and conditions are created for the transition to “anomalous” flow 
conditions. In the segment 2-2’, the quasiregular wave pattern which contains a pair of discontinuities 
of the “hydraulic jump -pit” type has already been completely formed, which is evidence of the stability 
of the slug flow conditions. The wave structure in this segment is qualitatively similar to that represented 
in Fig. 2 (ABCEA). A phase velocity and wavelength comparison with the corresponding stationary 
solutions will be possible after a two-parameter family of “anomalous” waves has been constructed, 
which is similar to that presented above in the case of roll waves in two-layer flows. 

If, for clarity, the computed data are presented in dimensioned variables for a “water-kerosene” system 
(b = 2.5 m/s’): L = 1000 m is the channel length, H = 0.06 m is the channel depth, ui = 0.8 m/s and 
u0 = 0.6 m/s are the constant velocities of the upper and lower layers, ho = 0.03 m is the depth of the 
lower layer at the channel inlet and c, = 0.004, ci = 0, then it can be seen that the horizontal scale is 
enlarged considerably compared with the structure of “anomalous” waves over a barrier in the case of 
the similar system in [ll]. Note that the non-stationary numerical calculation was carried out using 
Godunov’s scheme, which has previously been employed [ 1 l] to calculate “anomalous” conditions in 
two-layer flows over an obstacle and to compare them with experimental data. 

Note that the transition from stratified flow conditions to slug flow conditions is indicative of the 
instability of the “intermediate” roll waves over the whole range of amplitudes up to the maximum. 
However, the last assertion must be considered as an hypothesis. Only the stability analysis of roll waves 
of finite amplitude will enable one to determine the stability and instability domains or travelling periodic 
waves. 

2 2’ 

I 1’ 

Fig. 3 
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